Resolução da equação do 3.º grau (ou cúbica)

A forma canónica da equação cúbica ou do 3.º grau é

ax^{3}+bx^{2}+cx+d=0\qquad com a\neq 0\qquad \left( 1\right)

O método de resolução usual começa por transformá-la noutra, fazendo a substituição x=t+h:

a\left( t+h\right) ^{3}+b\left( t+h\right) ^{2}+c\left( t+h\right) +d=0

at^{3}+\left( b+3ah\right) t^{2}+\left( c+2bh+3ah^{2}\right) t+d+ch+ah^{3}+bh^{2}=0

Dividindo por a e ordenando o polinómio do lado esquerdo pelas potências decrescente de t, obtemos — se escolhermos h=-\dfrac{b}{3a}

x=t-\dfrac{b}{3a}\qquad \left( 2\right)

— uma nova equação cúbica (em t) à qual falta o termo do 2.º grau:

t^{3}+pt+q=0\qquad \left( 3\right)

cujos coeficientes são:

p=\dfrac{c}{a}-\dfrac{b^{2}}{3a^{2}}\qquad \left( 4\right)

e

q=\dfrac{2b^{3}}{27a^{3}}-\dfrac{bc}{3a^{2}}+\dfrac{d}{a}\qquad\left( 5\right)

Se exprimirmos a variável t na soma de duas outras 

t=u+v\qquad \left( 6\right)

a equação \left( 3\right) transforma-se em

\left( u^{3}+v^{3}+q\right) +\left( 3uv+p\right) \left( u+v\right) =0\qquad (7)

(Sobre outro método de resolução ver adenda que basicamente transcreve o meu post Resolução da equação do 3.º grau (ou cúbica) II)

Uma solução de (7) é a dada pelo sistema em u e v

\left\{ \begin{array}{c}u^{3}+v^{3}=-q\\u^{3}v^{3}=-\dfrac{p^{3}}{27}\end{array}\right.\qquad \left( 8\right)

Somos assim conduzidos ao problema de achar dois números u^{3} e v^{3} dos quais se sabe a soma S=u^{3}+v^{3}=-q e o produto P=u^{3}v^{3}=-\dfrac{p^{3}}{27}. Como é bem sabido esses números são as duas soluções Y_{+} e Y_{-} da equação auxiliar do 2.º grau:

Y^{2}-SY+P=0\qquad \left( 9\right)

De facto

\left\{\begin{array}{c}Y_{+}+Y_{-}=S\\Y_{+}Y_{-}=P\end{array}\right.\iff\left\{\begin{array}{c}Y_{+}+P/Y_{+}=S\\Y_{-}=P/Y_{+}\end{array}\right.

\iff\left\{\begin{array}{c}Y_{+}^{2}-SY_{+}+P=0\\Y_{-}=P/Y_{+}\end{array}\right.

e

\left\{ \begin{array}{c}Y_{+}+Y_{-}=S\\Y_{+}Y_{-}=P\end{array}\right.\iff\left\{\begin{array}{c}Y_{-}+P/Y_{-}=S\\Y_{+}=P/Y_{-}\end{array}\right.

\iff\left\{\begin{array}{c}Y_{-}^{2}-SY_{-}+P=0\\Y_{+}=P/Y_{-}\end{array}\right.

Resolvendo-a determinamos

Y_{+}=\dfrac{S+\sqrt{S^{2}-4P}}{2}=-\dfrac{q}{2}+\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}=\dfrac{-q+\sqrt{\Delta}}{2}\qquad\left( 10\right)

Y_{-}=\dfrac{S-\sqrt{S^{2}-4P}}{2}=-\dfrac{q}{2}-\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}=\dfrac{-q-\sqrt{\Delta}}{2}\qquad\left( 11\right)

Nesta notação o discriminante \Delta é igual a

\Delta =q^{2}+\dfrac{4p^{3}}{27}.

Consideremos, sem perda de generalidade, Y_{+}=u^{3} e Y_{-}=v^{3}. Introduzindo (10) e (11) em (6), obtemos a solução t_{1}=\sqrt[3]{Y_{+}}+\sqrt[3]{Y_{-}}:

    t_{1}=\left( \dfrac{-q+\sqrt{\Delta }}{2}\right) ^{1/3}+\left(\dfrac{-q-\sqrt{\Delta}}{2}\right) ^{1/3}

ou seja

t_{1}=\left( -\dfrac{q}{2}+\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}\right) ^{1/3}+\left( -\dfrac{q}{2}-\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}\right) ^{1/3}\qquad (12)

e uma solução da equação inicial

x_{1}=\left( -\dfrac{q}{2}+\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}\right) ^{1/3}+\left( -\dfrac{q}{2}-\dfrac{1}{2}\sqrt{q^{2}+\dfrac{4p^{3}}{27}}\right) ^{1/3}-\dfrac{b}{3a}\quad \left( 13\right)

Conhecida a solução t_{1}, podemos determinar as duas restantes t_{2} e t_{3} decompondo o polinómio do primeiro membro de (3) num produto de factores lineares:

\left( t-t_{1}\right) \left( t-t_{2}\right) \left( t-t_{3}\right) =t^{3}+pt+q

ou

t^{3}-\left( t_{1}+t_{2}+t_{3}\right) t^{2}+\left( t_{1}t_{2}+t_{1}t_{3}+t_{2}t_{3}\right) t-t_{1}t_{2}t_{3}=t^{3}+pt+q

Os dois polinómios são equivantes se tiverem iguais coeficientes homólogos:

\left\{ \begin{array}{c}t_{2}+t_{3}=-t_{1}\\t_{2}t_{3}=-\dfrac{q}{t_{1}}\end{array}\right. \qquad \left( 14\right)

Novamente temos de determinar dois números t_{2} e t_{3} dos quais se conhece a soma (-t_{1}) e o produto (-\dfrac{q}{t_{1}}). Para esse fim formamos a equação do 2.º grau:

Z^{2}+t_{1}Z-\dfrac{q}{t_{1}}=0\qquad \left( 15\right)

que resolvida dá as soluções

t_{2}=Z_{+}=-\dfrac{t_{1}}{2}+\sqrt{\dfrac{t_{1}^{2}}{4}+\dfrac{q}{t_{1}}}\qquad \left( 16\right)

t_{3}=Z_{-}=-\dfrac{t_{1}}{2}-\sqrt{\dfrac{t_{1}^{2}}{4}+\dfrac{q}{t_{1}}}\qquad \left( 17\right)

As três soluções da equação em x são então:

x_{k}=t_{k}-\dfrac{b}{3a}\qquad k=1,2,3\qquad \left( 18\right)

No caso do discriminante ser negativo, p<0, convertemos os complexos conjugados Y_{+} e Y_{-} à forma trigonométrica

Y_{+}=\dfrac{-q+i\sqrt{-\Delta }}{2}=\left\vert Y_{+}\right\vert \left(\cos \theta +i\sin \theta \right)

Y_{-}=\dfrac{-q-i\sqrt{-\Delta }}{2}=\left\vert Y_{-}\right\vert \left(\cos \theta -i\sin \theta \right)

Os módulos são iguais:

\left\vert Y_{+}\right\vert =\left\vert Y_{-}\right\vert =\dfrac{1}{2}\sqrt{q^{2}-\Delta }=\sqrt{-\dfrac{p^{3}}{27}}

e os argumentos são simétricos, sendo o de Y_{+}:

\theta =\arccos \left( \dfrac{-q/2}{\left\vert Y_{+}\right\vert }\right) =\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right)

As três raízes cúbicas de Y_{+} e Y_{-} são (k=0,1,2)

\left\{\begin{array}{c}\sqrt[3]{Y_{+}}=\sqrt{-\dfrac{p}{3}}\left(\cos \left( \dfrac{\theta }{3}+\dfrac{2k\pi }{3}\right) +i\sin\left(\dfrac{\theta }{3}+\dfrac{2k\pi }{3}\right) \right)\\\\\sqrt[3]{Y_{-}}=\sqrt{-\dfrac{p}{3}}\left( \cos \left( \dfrac{\theta }{3}+\dfrac{2k\pi }{3}\right) -i\sin \left(\dfrac{\theta }{3}+\dfrac{2k\pi }{3}\right) \right) \end{array}\right.\qquad \left( 19\right)

Obtemos, respectivamente, para k=0, 1 e 2 as três soluções da equação \left( 3\right) :

t_{1}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) \right) \qquad \left( 20\right)

t_{2}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) +\dfrac{2\pi }{3}\right) \qquad \left( 21\right)

t_{3}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) +\dfrac{4\pi }{3}\right) \qquad \left( 22\right)

e as da equação original \left( 1\right) :

x_{1}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) \right) -\dfrac{b}{3a}\qquad \left( 23\right)

x_{2}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) +\dfrac{2\pi }{3}\right) -\dfrac{b}{3a}\qquad \left( 24\right)

x_{3}=2\sqrt{-\dfrac{p}{3}}\cos \left( \dfrac{1}{3}\arccos \left( -\dfrac{q}{2}\sqrt{-\dfrac{27}{p^{3}}}\right) +\dfrac{4\pi }{3}\right) -\dfrac{b}{3a}\qquad \left( 25\right)

 Exemplos

1. Determine as soluções da equação

  x^{3}-6x^{2}+11x-6=0

\blacktriangleright\quad Os coeficientes são:

a=1,b=-6,c=11,d=-6

Pondo

x=t-\dfrac{b}{3a}=t-\dfrac{-6}{3}=t+2

a equação transforma-se em

t^{3}-t=0

uma vez que os seus coeficientes são

p=11-\dfrac{\left( -6\right) ^{2}}{3}=-1

e

q=\dfrac{2\left( -6\right) ^{3}}{27}-\dfrac{\left( -6\right) 11}{3}-6=0

As suas soluções são t=0,1,-1, a que correspondem as da equação na forma canónica x=2,3,1.\quad\blacktriangleleft

2. Resolva

2x^{3}-22x-12=0

\blacktriangleright\quad Agora temos

a=2,b=0,c=-22,d=-12

Como era de esperar a substituição é

x=t-\dfrac{b}{3a}=t

e os coeficientes da equação em t

t^{3}-11t-6=0

são simplesmente os da equação inicial divididos por 2:

p=\dfrac{c}{a}=-11

e

q=\dfrac{d}{a}=-6

O discriminante é negativo

\Delta =\dfrac{6^{2}}{4}-\dfrac{11^{3}}{27}=-\dfrac{1088}{27}

Assim, como h=-\dfrac{b}{3a}=0:

t_{1}=2\sqrt{\dfrac{11}{3}}\cos \left( \dfrac{1}{3}\arccos \left(\dfrac{6}{2}\sqrt{\dfrac{27}{11^{3}}}\right) \right) =3,561\,6=x_{1}

t_{2}=2\sqrt{\dfrac{11}{3}}\cos \left( \dfrac{1}{3}\arccos \left(\dfrac{6}{2}\sqrt{\dfrac{27}{11^{3}}}\right) +\dfrac{2\pi }{3}\right) =-3,0=x_{2}

t_{3}=2\sqrt{\dfrac{11}{3}}\cos \left( \dfrac{1}{3}\arccos \left(\dfrac{6}{2}\sqrt{\dfrac{27}{11^{3}}}\right) +\dfrac{4\pi }{3}\right) =-0,561\,55=x_{3}

Tentando diminuir os erros de cálculo, reparemos que o inteiro -3 é uma solução. Se recalcularmos as outras duas, obtemos as soluções exactas:

-\dfrac{-3}{2}+\sqrt{\dfrac{9}{4}+\dfrac{-6}{-3}}=\dfrac{3}{2}+\dfrac{1}{2}\sqrt{17}

e

-\dfrac{-3}{2}-\sqrt{\dfrac{9}{4}+\dfrac{-6}{-3}}=\dfrac{3}{2}-\dfrac{1}{2}\sqrt{17}\quad\blacktriangleleft

3. Resolva a equação

x^{3}-3x^{2}+x+5=0

\blacktriangleright\quad Os coeficientes são:

a=1,b=-3,c=1,d=5

Fazendo a substituição

x=t+1

obtém-se a equação

t^{3}-2t+4=0

em que

p=\dfrac{1}{1}-\dfrac{\left( -3\right) ^{2}}{3}=-2

e

q=\dfrac{2\left( -3\right) ^{3}}{27}-\dfrac{\left( -3\right) }{3}+\dfrac{5}{1}=4

Uma solução da equação em t é dada pela fórmula resolvente

t_{1}=\left( -\dfrac{4}{2}+\sqrt{\dfrac{4^{2}}{4}+\dfrac{\left( -2\right) ^{3}}{27}}\right) ^{1/3}+\left( -\dfrac{4}{2}-\sqrt{\dfrac{4^{2}}{4}+\dfrac{\left( -2\right) ^{3}}{27}}\right) ^{1/3}=-2

a que corresponde a solução da equação em x:

x_{1}=-2-\dfrac{-3}{3}=-2+1=-1

As restantes soluções da equação em t são

t_{2}=-\dfrac{-2}{2}+\sqrt{\dfrac{4}{4}+\dfrac{4}{-2}}=1+\sqrt{-1}=1+i

t_{3}=-\dfrac{-2}{2}-\sqrt{\dfrac{4}{4}+\dfrac{4}{-2}}=1-\sqrt{-1}=1-i

e, portanto, as da equação em x são

x_{2}=1+i+1=2+i

x_{3}=1-i+1=2-i\quad\blacktriangleleft

Adenda: a equação seguinte aparece nesta questão de Rajesh K Singh no MSE

x^{3}-13x^{2}+32x+20=0

As três soluções são

x_{1}=\dfrac{2\sqrt{73}}{3}\cos\left(\dfrac{1}{3}\arccos\left(\dfrac{55\sqrt{73}}{5329}\right)\right)+\dfrac{13}{3}\approx 9.347\,9

x_{2}=\dfrac{2\sqrt{73}}{3}\cos\left(\dfrac{1}{3}\arccos\left( \dfrac{55\sqrt{73}}{5329}\right)+\dfrac{2\pi }{3}\right)+\dfrac{13}{3}\approx -0.513\,6

x_{3}=\dfrac{2\sqrt{73}}{3}\cos \left( \dfrac{1}{3}\arccos \left( \dfrac{55\sqrt{73}}{5329}\right) +\dfrac{4\pi }{3}\right) +\dfrac{13}{3}\approx 4.165\,7

* * *

ADENDA (do meu post Resolução da equação do 3.º grau (ou cúbica) II):

Além do método indicado acima para resolver a equação cúbica reduzida em t

t^{3}+pt+q=0

que consiste em exprimir a variável t na forma t=u+v, tomei recentemente conhecimento, nesta resposta de user 170039, à questão Derivation of Cubic Formula de MathNoob, no Mathematics Stack Exchange, da substituição t=y+\dfrac{k}{y}, em que a constante k=-\dfrac{p}{3}.

Através dela obtém-se a equação em y

y^{3}-\dfrac{p^{3}}{27}\dfrac{1}{y^{3}}+q=0

ou seja, para y\neq 0, a equação do 6.º grau seguinte — do 2.º grau em y^{3}

\left( y^{3}\right) ^{2}+qy^{3}-\dfrac{p^{3}}{27}=0.

O leitor poderá verificar que os dois métodos conduzem à mesma fórmula resolvente; por exemplo, escolhendo a solução y^{3}=-\dfrac{q}{2}+\sqrt{\dfrac{q^{2}}{4}+\dfrac{p^{3}}{27}}, tem-se

\begin{aligned}t&=y-\dfrac{p}{3y}=\left( -\dfrac{q}{2}+\sqrt{\dfrac{q^{2}}{4}+\dfrac{p^{3}}{27}}\right)^{1/3}-\dfrac{p}{3\left( -\dfrac{q}{2}+\sqrt{\dfrac{q^{2}}{4}+\dfrac{p^{3}}{27}}\right) ^{1/3}} \\&=\cdots\\  &=\left( -\dfrac{q}{2}+\sqrt{\dfrac{q^{2}}{4}+\dfrac{p^{3}}{27}}\right)^{1/3}+\left( -\dfrac{q}{2}-\sqrt{\dfrac{q^{2}}{4}+\dfrac{p^{3}}{27}}\right)^{1/3}.\end{aligned}

Referência

Compêndio de Álgebra do 7.º ano do Liceu, 1963, de J. Sebastião e Silva e J. da Silva Paulo, págs. 217-218.

Última actualização: 15.12.14

 

Sobre Américo Tavares

eng. electrotécnico reformado / retired electrical engineer
Esta entrada foi publicada em Equações, Exercícios Matemáticos, Matemática, Matemáticas Gerais, Mathematics Stack Exchange, Teorema / Teoria com as etiquetas , , , . ligação permanente.

89 respostas a Resolução da equação do 3.º grau (ou cúbica)

  1. Carlos Alberto Guimarães de Sá diz:

    Admitimos X e somente o X por uma só incógnita apresentada. A idade, que poderá ser desdobrada para as idades em cada tempo verbal. Um artifício válido que torna mais fácil a solução. Outra coisa, quem pede que encontremos a idade final é o mais velho e não o mais novo. além disso, a solução do problema oferece todas as idades em cada época, partindo de X e 2X conforme, acima citado, que a oração mais destacada do problema em si.

  2. Pingback: Polynomials – Solutions – Math Solution

  3. Carlos Alberto Guimarães de Sá diz:

    Não é um erro, pois o professor que resolveu o problema das idades via internet é um ótimo professor, podemos considerar um engano , coisa que acontece e é absolutamente normal.

  4. Carlos Alberto Guimarães de Sá diz:

    x³-5x²+4=0

    a=1 ; b=-5 ; c=0 e d=4 ax³ + bx² + cx + d = 0
    x = y + m m=-(-5) / 3.1 = 5/3 x = Y + 5 / 3
    (y+5/3)³- 5(y+5/3)²+ 4 = 0
    y³+3 (5/3)²y+(15/3)y²+(5/3)³-5(y²+2(5/3y)+(5/3)²+4=0
    y³+ (75/9)y +5y²+125/27-5y²-(50/3)y+125 /9 + 4 = 0
    P= (75/9) y- (50/3) y = (75y-150 y) / (9) = -75/9
    q= (125/27)-(125/9) + 4 = (125-375-108) / (27) = -142/27
    q/2 = 142/27 x 1/2 = -142/54
    p/3 = -75/9 x 1/3= -75/27
    Delta = ((-142/54)²+(-75/27)³ = -20,82 <0
    Teta: Cos-1 -Raíz cúbica de (142/54)² / (75/27)³ = 124,6108771°
    X1=cos de teta/3*-2* (75/27)½ + 5/3
    X1=0,7485281374*-2* (75/27)½ + 5/3 = -0,8284271247
    X2= cos de ( teta/3+120° )*-2* (75/27)½ + 5/3
    X2= -0,9485281374*-2*(75/27)½ + 5/3 = 4,828427125
    X3=cos (teta/3+240°)*-2*(75/27)½ + 5/3
    X3=0,2*-2* (75/27)½ + 5/3 =
    Carlos Alberto Guimarães de Sá
    Eletromecânico. Escola de Engenharia Eletromecânica da Bahia.

  5. Carlos Alberto Guimarães de Sá diz:

    Nem sempre as soluções mais complicadas superam as mais simples. Tenho como exemplo um problema sobre a área de um triângulo retângulo que mede 54m² e seus lados estão em PA. Deixemos o PA e vamos para o MMC. Se a área de um triângulo retângulo mede 54m², a área do retângulo mede 108m². Daí tiramos que o MMC de 108 é 2x2x3x3x3. Se os lados estão em PA, vamos descobrir o tal PA e o restante. 2x2x3 é um lado, 3×3 é o outro lado, além do mais, a base x altura = 108m². O tal PA é o 3 e o outro lado o 15, já que 12 + 3 = 15. Muito bem. Sem precisar de outros métodos, descobrimos tudo sobre o famoso triângulo sem necessitar do uso do binômio soma, binômio diferença e outros artefatos matemáticos. É uma questão de preferência. O MMC resolve tantos problemas que não podemos imaginar quais.

  6. Carlos Alberto Guimarães de Sá diz:

    A equação do segundo grau x²+10x+16=0
    Passo a passo.
    Pelo método de Viète.
    X=p+q
    x²= (p+q)²
    Fica: p²+2pq+q²+10(p+q)+16=0.
    p²+2pq+q²+10p+10q+16=0
    Vamos colocar o p em evidencia.
    p²+2pq+10p+q²+10q+16=0
    p²+p(2q+10)+q²+10q+16=0
    Façamos : 2q+10=0 2q=-10 q=-10/2 = -5
    q=-5
    Restando calcular p.
    p²+q²+10q+16=0 p²+(-5)²+10(-5)+16=0
    p²+25-50+16=0 p²+41-50=0 p²-9=0
    p=Raiz quadrada de 9 = 3
    p=3 e q=-5 x=±p+q x1=+3-5 = -2
    x2=-3-5 = -8
    FIM.

  7. Carlos Alberto Guimarães de Sá diz:

    Espero contribuir para essa excelente realização do Eng. Américo Tavares para facilitar o aprendizado de muitos interessados pela matemática do primeiro e segundo grau. O parabenizo pelo grande serviço prestado.

Deixe um comentário

Este site utiliza o Akismet para reduzir spam. Fica a saber como são processados os dados dos comentários.